Mishra tutorial

mishratutorial124@gmail.com

Class 10 - Mathematics

Sample paper

Maximum Marks: 80
Time Allowed: 3 hours

General Instructions:

i. All the questions are compulsory.
ii. The question paper consists of 40 questions divided into 4 sections A, B, C, and D.
iii. Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
iv. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
v. Use of calculators is not permitted.

Section A

1. The decimal expansion of number $\frac{441}{2^{2} \times 5^{3} \times 7}$ has
a) None of these
b) non-terminating and non-repeating decimal
c) terminating decimal
d) non-terminating repeating decimal
2. For every natural number ' n ', 6 n always ends with the digit
a) 4
b) 8
c) 6
d) 0
3. The mode of $4,5,6,8,5,4,6,5,6, x, 8$ is 6 . The value of ' x ' is
a) 8
b) 6
c) 5
d) 4
4. The discriminant of $4 x^{2}+3 x-2=0$ is
a) -23
b) 41
c) 39
d) -31
5. The angle of elevation of the sun when the shadow of a pole of height ' h ' metres is $\sqrt{3} \mathrm{~h}$ metres long is
a) 60°
b) 45°
c) None of these
d) 30°
6. Choose the correct option and justify your choice: $\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}$
a) $\tan 90^{\circ}$
b) 1
c) $\sin 45^{\circ}$
d) 0
7. If $\sin \theta-\cos \theta=0$, then the value of is
a) 60°
b) 30°
c) 45°
d) 90°
8. A number ' x ' is chosen at random from the numbers $-4,-3,-2,-1,0,1,2,3,4,5$. The probability that $|x|<3$ is
a) 1
b) 0
c) $\frac{1}{2}$
d) $\frac{7}{10}$
9. Three consecutive vertices of a parallelogram ABCD are $\mathrm{A}(1,2), \mathrm{B}(1,0)$ and $\mathrm{C}(4,0)$. The co - ordinates of the fourth vertex D are
a) $(-4,2)$
b) $(4,-2)$
c) $(4,2)$
d) $(-4,-2)$
10. If the line segment joining the points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ is divided by a point P in the ratio $1: \mathrm{k}$ internally, then the co - ordinates of the point P are
a) $\left(\frac{x_{2}-k x_{1}}{1+k}, \frac{y_{2}-k y_{1}}{1+k}\right)$
b) $\left(\frac{x_{2}+k x_{1}}{1+k}, \frac{y_{2}+k y_{1}}{1+k}\right)$
c) $\left(\frac{x_{2}+k x_{1}}{1-k}, \frac{y_{2}+k y_{1}}{1-k}\right)$
d) $\left(\frac{x_{1}+k x_{2}}{1+k}, \frac{y_{1}+k y_{2}}{1+k}\right)$
11. Fill in the blanks:
\qquad .
The shape of a glass tumbler is usually in the form of
12. Fill in the blanks:

Factors of $3 x^{3}-x^{2}-3 x+1$ are \qquad .

Fill in the blanks:
The remainder when $\mathrm{x}^{4}+\mathrm{x}^{3}-2 \mathrm{x}^{2}+\mathrm{x}+1$ is divided by $\mathrm{x}-1$ is \qquad .
13. Fill in the blanks:

A number is chosen from 1 to 100 , then the probability that it is a prime number is \qquad .
14. Fill in the blanks:

The sum of the AP, $1+2+3+4+5+6+---10$ is \qquad _.
15. Fill in the blanks:

A diameter of a circle divides it into \qquad equal parts.
16. Find the simplest form of $\frac{1095}{1168}$.
17. In the given figure, AB, AC and PQ are tangents. If $\mathrm{AB}=5 \mathrm{~cm}$, then find the perimeter of $\triangle A P Q$.

18. If a line intersects a circle in two distinct points, what is it called?
19. Find the $10^{\text {th }}$ term of the AP $2,7,12, \ldots$

Find $11^{\text {th }}$ term of the A.P. $10.0,10.5,11.0,11.5, \ldots .$.
20. Find the nature of the roots of the quadratic equation: $2 x^{2}-8 x+5=0$

Section B

21. Two different dice are tossed together. Find the probability:
i. of getting a doublet
ii. of getting a sum 10 , of the numbers on the two dice.
22. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm .2 Find the radius of the circle.
23. In Fig. if $\angle P=\angle R T S$, prove that $\triangle R P Q \sim \triangle R T S$.

In the given figure, S and T are points on the sides PQ and PR respectively of $\triangle P Q R$, such that $\mathrm{PT}=2 \mathrm{~cm}, \mathrm{TR}$ $=4 \mathrm{~cm}$ and $S T \| Q R$. Find the ratio of the areas of $\triangle P S T$ and $\triangle P Q R$

24. A straight highway leads to the foot of a tower. A man standing on its top observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. 6 seconds later, the angle of depression of the car becomes 60°. Find the time taken by the car to reach the foot of tower from this point.
25. Solve the quadratic equations by factorization method:

$$
x^{2}-4 a x+4 a^{2}-b^{2}=0
$$

OR
A natural number, when increased by 12 , equals 160 times its reciprocal. Find the number.
26. A metallic sphere of radius 4.2 cm is melted and recast into the shape of a cylinder of radius 6 cm . Find the height of the cylinder.

Section C

27. Prove that $(3+\sqrt{2})$ is irrational.

OR
Find the HCF of the following polynomials: $2\left(x^{4}-y^{4}\right), 3\left(x^{3}+2 x^{2} y-x y^{2}-2 y^{3}\right)$
28. Show that the points $A(2,-2), B(14,10), C(11,13)$ and $D(-1,1)$ are the vertices of a rectangle.
29. Find two numbers such that the sum of twice the first and thrice the second is 92 , and four times the first exceeds seven times the second by 2 .

OR
Find the values of a and b for which the following system of equations has infinitely many solutions:
$2 x-(2 a+5) y=5$
$(2 b+1) x-9 y=15$
30. Find the zeros of $f(v)=v^{2}+4 \sqrt{3} v-15$ and verify the relationship between the zeros and their coefficients.
31. If the $\mathrm{m}^{\text {th }}$ term of an AP be $\frac{1}{n}$ and its nth term be $\frac{1}{m}$, then show that its (mn)th term is 1 .
32. Evaluate the following: $\frac{\sec ^{2}\left(90^{\circ}-\theta\right)-\cot ^{2} \theta}{2\left(\sin ^{2} 25^{\circ}+\sin ^{2} 65^{\circ}\right)}-\frac{2 \cos ^{2} 60^{\circ} \tan ^{2} 28^{\circ} \tan ^{2} 62^{\circ}}{3\left(\sec ^{2} 43^{\circ}-\cot ^{2} 47^{\circ}\right)}$.

OR
If $\sin \theta+\cos \theta=\sqrt{2}$, then evaluate $\tan \theta+\cot \theta$.
33. A chord of a circle of radius 14 cm subtends an angle of 120° at the centre. Find the area of the corresponding minor segment of the circle. [Use $\pi=\frac{22}{7}$ and $\sqrt{3}=1.73$].
34. The king, queen and jack of club are removed from a deck of 52 cards. Then the cards are well-shuffled. One card is drawn at random from the remaining cards. Find the probability of getting
i. a heart
ii. a king
iii. a club
iv. a '10 'of hearts.

Section D

35. Draw a circle of radius 2.5 cm and take a point P outside it, Without using the centre of the circle, draw two tangents to the circle from the point P.

> OR

Construct a triangle ABC in which $\mathrm{BC}=6 \mathrm{~cm}, \angle \mathrm{BAC}=60^{\circ}$ and median through A is 4.5 cm . Construct a $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ similar to $\triangle \mathrm{ABC}$ with $\mathrm{BC}^{\prime}=8 \mathrm{~cm}$. Write steps of construction.
36. If in a triangle, the square on one side is equal to the sum of the squares on the remaining two sides, prove 4 that the angle opposite to the first side is a right angle.

Use the above and prove:
In a $\triangle \mathrm{ABC}, \mathrm{BD} \perp \mathrm{AC}$ such that $\mathrm{BD}^{2}=\mathrm{DC}$. AD . Prove that $\triangle \mathrm{ABC}$ is a right angled triangle.
37. Draw the graphs of the pair of linear equations:
$x+2 y=5$ and $2 x-3 y=-4$
Also find the points where the lines meet the x-axis.
OR
For Uttarakhand flood victims two sections A and B of class X contributed Rs 1,500. If the contribution of X-A was Rs 100 less than that of X-B, find graphically the amounts contributed by both the sections.
38. How many spherical bullets can be made out of a solid cube of lead whose edge measures 44 cm , each bullet being 4 cm in diameter.

OR
A cone made of paper has height 3 h and vertical angle 2α. It contains two other cones of height 2 h and h and vertical angles 4α and 6α respectively. Find the ratio of the two volumes in between the cones.
39. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed 4 at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower
40. The median of the following data is 16 . Find the missing frequencies a and b if the total of frequencies is 70.

Class	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
Frequency	12	a	12	15	b	6	6	4

